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Abstract 

We describe a new method for quantifying the orientation of trabecular bone from three–

dimensional images. Trabecular lattices from five human vertebrae were decomposed 

into individual trabecular elements, and the orientation, mass, and thickness of each 

element were recorded. Continuous functions that described the total mass (M(ϕ,θ)) and 

mean thickness (τ(ϕ,θ)) of all trabeculae as a function of orientation were derived. The 

results were compared with experimental measurements of the elastic modulus in the 

three principal anatomic directions. A power law scaling relationship between the 

anisotropies in mass and elastic modulus was observed; the scaling exponent was 1.41 

(R2 = 0.88). As expected, the preponderance of trabecular mass was oriented along the 

cranial–caudal direction; on average, there was 3.4 times more mass oriented vertically 

than horizontally. Moreover, the vertical trabeculae were 30% thicker, on average, than 

the horizontal trabeculae. The vertical trabecular thickness was inversely related to the 

connectivity (R2 = 0.70; p = 0.07), suggesting a possible organization into either few, 

thick trabeculae or many thin trabeculae. The method, whichaccounts for the mechanical 

connectedness of the lattice, provides a rapid way to both visualize and quantify the 

three-dimensional organization of trabecular bone. 

 

Running Title: ODF for Trabecular Bone 
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Introduction 

The increased risk of fracture following estrogen reduction at menopause is linked 

with loss of bone mass (33). However, bone mass is not perfectly correlated with 

fracture; there is significant overlap of normal and osteoporotic populations when 

fracture frequency is compared (14, 34). To explain this overlap, investigators have 

proposed risk factors in addition to bone mass, such as deterioration of trabecular 

architecture (22). 

 Relating trabecular architecture to fracture risk is difficult. Trabecular bone is a 

dynamic system; its architecture can adaptively compensate for local deficiencies in 

strength through remodeling or micro–modeling (5). These dynamic adaptations 

confound attempts to correlate architecture with mechanical behavior. In addition, 

trabecular bone’s anisotropy plays a critical role in its biomechanical behavior (11). 

When the preferred orientation of trabecular bone is accounted for in a fabric tensor, 

there is a marked improvement in predicting stiffness and strength (3). Therefore, in 

studies of trabecular bone loss with aging and menopause, it becomes important to 

measure not only trabecular bone mass, but to record where and along what orientation 

the bone is lost or gained in response to altered mechanical set points. Such studies are 

now feasible due to the development of instrumentation for three–dimensional imaging of 

trabecular bone (6, 20, 27), and of techniques for finite-element modeling from these 

images (23, 28, 38, 39). 

We present a method for describing the orientation of trabecular bone that is 

based on its decomposition into individual structural elements. The method, which takes 

as its starting point the skeletal decomposition method described by Pothuaud et al. (31, 
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32), allows characterization of the microstructure of individual trabeculae. We used this 

method to examine the orientation dependence of trabecular architecture in specimens of 

human vertebrae. We compared the mass anisotropy with the orientation dependence of 

the elastic modulus. In addition, the thickness of trabeculae lying along different 

orientations was measured. These measurements of individual trabecular elements were 

compared with conventional measures of trabecular thickness. 

 

Materials and Methods 

 Specimen preparation and imaging 

 Five cubic specimens of trabecular bone, which had been used in earlier studies 

(19), were prepared from human L1 vertebrae. Human subjects exemption had been 

granted by the Lawrence Livermore National Laboratory’s Institutional Review Board. 

The specimens were cut under irrigation with a slow speed diamond saw from the 

superior–anterior region to a dimension of 8 mm. The orientations of the cubes with 

respect to the principal anatomic axes were noted. The vertebrae were from males aged 

63–80 years. 

 After preparation, the specimens were imaged with synchrotron radiation. The 

specimens were oriented with the cranial surface on top, and with the detector facing the 

posterior surface at zero degrees of axis rotation. The radiation was monochromatic at 25 

keV. Tomography was performed according to a protocol described in detail elsewhere 

(17, 18, 21). Two–dimensional radiographs of the specimens were obtained at half–

degree rotational increments, and the data were reconstructed into three–dimensional 

images by Fourier–filtered back–projection. For this study, the data were reconstructed 
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into cubic volume elements (voxels) 11.7 µm on edge. A 4 mm subset of a typical CT 

image is shown in Figure 1. 

 

Image processing and analysis 

 To decompose the lattice of trabecular bone into its individual structural elements, 

it was first necessary to remove the marrow from the images. Setting all image voxels 

below a marrow threshold to zero accomplished this task. Monochromatic radiation 

provided high contrast between the marrow and bone tissue; therefore, a single threshold 

could be used for segmentation (18). 

 After segmentation, the images were skeletonized with a requirement that 

connectivity be preserved. All surface voxels were identified, and then removed. If the 

removal of a voxel would have altered the connectivity, then it was forced to remain. 

This peeling operation was repeated until elements could no longer be removed. A 

magnified region of trabecular bone, with its skeleton superposed, is shown in Figure 2a. 

 The medial line segments that composed the skeleton did not always converge to 

a common vertex. This created many closely spaced nodes and short line segments that, 

upon closer inspection, were artifacts of the skeletonization (e.g., see Figure 8). 

Therefore, nodes that were within a mean trabecular thickness of one another were 

merged. 

 After skeletonizing, every trabecular element was removed from the lattice at its 

nodal points (Figure 2b); the mass (assuming a uniform density for each voxel), length, 

and thickness at midpoint of each of these trabecular elements were recorded. Two 

measures of trabecular length were recorded: Euclidian length (EL), defined as the 
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straight-line distance between nodal points, and the length of the skeletal line segment 

(CL). By comparing the ratios of these two measures, an estimate of trabecular curvature 

could be obtained. Thickness at midpoint was defined as the smallest diameter sphere that 

could fit within the trabecular element at a position midway between the nodes. 

The orientation of each trabecular element was defined by its angular tilt, θ, and 

azimuthal angle, φ, with respect to the posterior surface. The coordinates were defined 

with the cranial direction at 90 degrees tilt (North Pole), and the posterior direction at 

zero degrees azimuth (longitude) and zero degrees tilt (latitude). The lateral and 

anterior/posterior directions lay on the equatorial plane. 

 The mass of each trabecular element was recorded on the surface of a sphere, with 

its latitude (θ) and longitude (φ) defining its position in the upper hemisphere. The mass 

was also recorded at its mirror position in the lower hemisphere to preserve spherical 

symmetry. A continuous function, the mass orientation distribution function, M(φ,θ), was 

fit to the discrete points (scalar field) distributed on the sphere (see Appendix). The 

spherical representation of the data made it natural to define M(φ,θ) in terms of a series of 

spherical harmonics (see appendix). A similar function, τ(φ,θ) defined a thickness 

orientation distribution function. Here, instead of summing all the mass, the mean 

thickness of all trabecular elements oriented along φ,θ  was recorded. 

 As the spherical harmonic representation is an infinite series expansion, in 

principal the distribution functions could be forced to fit every point of the scalar field. 

However, because trabecular bone appears to be orthotropic we chose to limit the terms 

of the expansion to 6th order. This was sufficient to fit the three principal directions as 

well as distinguish deviations from orthotropic symmetry. However, the fit overestimated 
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the contributions from the 20% or so of the mass that was oriented aw from an axis of 

symmetry. The fits in these regions were improved by adding additional terms to the 

expansion, but as this did not improve the correlations with the elastic properties, we 

decided to limit the expansion to 6th order.  

  

Histomorphometric analyses 

 For comparison, a spatially averaged trabecular thickness was estimated in two 

ways. First, a biased mean trabecular width (Tb.Th) was estimated with the plate model 

from a single coronal cross section through the middle of each specimen. Second, an 

unbiased mean trabecular thickness 3D<τ> was obtained from the relationship between 

surface area, S, and volume, V, in three–dimensions (40): 

 

S
VD 23 =τ    (1) 

 

Here, the surface area was determined by integrating a polygonal surface mesh, and 

trabecular volume was determined by voxel counting. 

 Three–dimensional connectivity, 3Dβ1, was determined with Feldkamp’s 

algorithm (6) after image purification. Image purification (29) removed the isolated 

packets of bone and marrow (salt and pepper noise at the trabecular surfaces) that were 

an unavoidable consequence of image segmentation. Though the total volume of these 

packets was inconsequential (< 10-5 of the total bone volume), their number was high 

enough to measurably affect the connectivity density (29). 
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Finite-element simulations 

The image voxels were converted into finite elements, and the Young’s modulus 

was determined for each of the three orthogonal orientations. The elements preserved the 

same dimensionality as the image voxels, 11.7 µm on edge. The element-by-element 

algorithm, originally formulated by Hughes et al. (13), was adapted for the analysis. The 

element type was the lattice-spring element described elsewhere (24, 25). An isotropic, 

linear elastic constitutive model with the tissue modulus normalized to 1 GPa and a 

Poisson’s ratio of 0.3 was used for the computations. For computational efficiency, the 

solutions were confined to the original lattice configuration; the linear kinematic 

approximation is believed to be valid for small strain determinations of the elastic 

response of trabecular bone (36). 

 

Results 

 The mass anisotropy of each specimen is given in Table 1. A representative mass 

orientation distribution function, M(φ,θ), is shown in Figure 3a. A color table represents 

the magnitude of M, with black to red being the lowest values and yellow–white being 

the highest. Orthotropic (three perpendicular mirror planes) symmetry was apparent in 

the mass orientation distribution functions. The mass distribution is graphed along a line 

of constant longitude (θ = +90o) between the cranial and lateral directions in Figure 3b. 

On average, there was 3.4 (s.d. = 0.49) times more mass oriented vertically (in the 

cranial/caudal direction) than horizontally (in the medial/lateral direction). This 

anisotropy in mass orientation was independent of the total amount of cancellous bone. 
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 The ratios of mass in the three orthogonal directions (mass anisotropy AM) are 

graphed against the measured ratios of the elastic modulus (elastic anisotropy AE) in 

Figure 4. The data followed a power law relationship with a scaling exponent γ = 1.41 

(R2 = .88): 

 

( )γME AA ∝    (2) 

 

 The thickness distribution function τ(φ,θ) of a different specimen is shown in 

Figure 5a. The thickness distribution for a constant longitude (θ = +90o) is graphed 

between the cranial and lateral orientations in Figure 5b. The thickest trabeculae were 

oriented along the load-bearing axis. Trabecular thickness and the reciprocal of the 

connectivity were correlated, as shown in Figure 6. The correlation was strongest along 

the vertical orientation (R2 = 0.70; p = 0.07), and weaker for the horizontal trabeculae (R2 

= 0.53; p = 0.16). This correlation between connectivity and thickness was observed in 

the absence of any correlation between trabecular bone volume and connectivity. 

 The trabecular thickness determined with the plate model, Tb.Th, was compared 

with the unbiased three–dimensional measure of thickness. As shown in Figure 7, the 

thickness determined with the plate model always overestimated the three–dimensional 

value. The plate model thickness more closely paralleled the thickness of the vertical 

plates. 
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Discussion 

We have developed an orientation distribution function for trabecular bone that is 

based on its decomposition into individual structural elements. We have applied this 

function to the analysis of three–dimensional synchrotron radiation microtomography 

images of trabecular bone from human vertebrae. In spite of the small number of 

specimens, several observations merit discussion. 

 As expected, the preponderance of trabecular mass was oriented vertically, and its 

distribution was generally orthotropic. More important, the anisotropy in mass did not 

depend on trabecular bone volume. All of the orientation distribution functions were 

similar in appearance, suggesting that the anisotropy of cancellous bone in the vertebra 

might be invariant with respect to bone density. Thus, we have provided additional 

supporting evidence of an earlier observation by Fyhrie et al. that cancellous bone tends 

to maintain constant ratio of trabecular number along principal axes (8), and more recent 

observations by Yang, et al. (43) that the eigenvectors (i.e., the principal axes in a 

tensoral analysis of linear elasticity) are independent of bone volume. It remains to be 

seen whether osteoporotic bone retains this symmetry, or whether the symmetry might be 

altered by pathologies affecting bone turnover. 

 The measured anisotropy in Young’s modulus, AE, was related by a power law to 

the anisotropy in mass, AM, when the same orientations were compared. This was not 

entirely unexpected; fabric tensor analysis based on the orientation dependence of mean 

intercept lengths is an effective predictor of elastic anisotropy (3). In addition, there is a 

theoretical basis for a power law relationship between elastic modulus and apparent 
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density, ρa, based on the likely deformation mechanisms in low–density foams (9, 10). 

For low–density foams, it is established that the Young’s modulus, E, scales as  

 

( )γρaE ∝    (3) 

 

where ρa = ρ/ρs, and ρs is the density of the solid. Theoretical arguments justify limiting 

values of γ = 1 for a perfect closed–cell foam, and γ = 2 for a perfect open–cell foam (2). 

Keaveny and Hayes (16) have reported a value of γ = 1.44 for trabecular bone. 

 However, a scaling law that relates the average apparent density with a spatially 

averaged material property does not imply that AE and AM should scale with the same 

exponent, particularly in a heterogeneous material. That it appears to do so is an 

indication that, for small strain elastic deformations, there is little or no coupling between 

the principal anatomic orientations. Coupling will no doubt arise at greater strains, 

although this can only be tested with geometrically nonlinear finite element simulations 

(36).  

As shown in Figure 6, trabecular thickness appeared to be correlated with the 

reciprocal of the connectivity. In other words, trabecular bone seems to be organized into 

either a few thick trabeculae or many thin trabeculae. This correlation appeared strongest 

for trabeculae oriented vertically. We can think of three reasons for this relationship. 

First, a uniform thinning of trabecular plates would initially increase the number of plate 

fenestrations and give the appearance of an increase in connectivity (18). This would also 

be consistent with correlation being strongest in the vertical (more plate–like) orientation. 

Second, the preferential removal of the thinnest trabecular elements would also give the 
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appearance that the mean trabecular thickness increases as connectivity (or trabecular 

number) decreases (7). Third, micromodeling, whereby the vertical trabeculae thicken to 

compensate for their fewer numbers, would also be consistent with our observations (5), 

although the evidence supporting this effect has largely been anecdotal (15, 42). 

 In this study, the two-dimensional plate model measure of trabecular thickness, 

Tb.Th, always overestimated the thickness determined by the 3D method. This was in 

contrast to an earlier study by Day et al. (4), who observed the opposite behavior. The 

difference between our work and theirs was that we measured the 2D Tb.Th. from a 

single coronal section, which was biased in favor of the thicker vertical trabeculae. A 

better procedure for estimating 2D Tb.Th would have been to take random, unbiased 

sections from different orientations (4). Unfortunately, this is rarely done in practice, 

especially in small animal studies where there is little available bone to utilize. With 

three–dimensional imaging methods, this bias was removed. 

 Three–dimensional imaging of trabecular bone is more common now that high-

resolution scanners have become available (1, 20, 21, 27, 29, 35). However, with few 

exceptions the methods of structure analysis have not taken full advantage of three–

dimensionality. The exceptions are important: three–dimensional measures of 

connectivity (a measure of topology) (6), the structure model index (a measure of shape) 

(12), and fractal dimension (a measure of complexity) (37) have improved our 

understanding of trabecular bone architecture. With respect to trabecular orientation, 

however, present methods of analysis have relied on extensions of the line intercept 

method or its equivalent in the Fourier transform domain (29, 30, 41). The intercept 

method, which assumes mechanical coupling of the lattice, is a statistical measure of 
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orientation. It provides a spatially averaged estimate of trabecular thickness that does not 

discriminate between horizontal and vertical orientations. We believe that the skeleton–

based, structural decomposition method proposed here, which provides a catalogue of all 

trabecular elements in the specimen, offers a significant improvement over line intercept 

methods for only a fractional increase in computational effort. 

 The line intercept method provides a statistical sampling o the trabecular mass, 

and provides a measure of how this mass is oriented in the bone. However, line intercepts 

cannot discriminate between connected or disconnected trabecular segments, thereby 

being insensitive to changes in connectivity that might affect the mechanical response. 

This problem is illustrated in Figure 8, where fenestrated trabeculae that are uncoupled 

mechanically are removed from the skeletal representation but would still be included in 

a line-intercept sampling. Thus, the orientation distribution function proposed here 

provides a measure of the “structural” symmetry as opposed to simply the average 

orientation of the mass. 

 Another advantage of the proposed orientation distribution function, which arises 

from the skeletal decomposition, is the ability to quantify the thickness of trabecular 

members oriented in a given direction. Thus, preferential thinning of horizontal 

trabeculae, out of proportion to the members oriented vertically, could be detected with 

the proposed method. As the line intercept method can only provide a mean thickness 

averaged over all of the trabecular elements, it cannot be used to reliably determine 

anisotropy in thickness. Thus, we believe that our proposed distribution function will be 

ore sensitive to architectural changes that might affect strength than more traditional 

methods based on the line intercept technique. 
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 A shortcoming with our study was the small number of specimens that were 

imaged. These specimens were chosen because we had mechanical data for them (23). 

Further studies on more specimens from different genders and a greater range in age will 

be required before we can discuss the present results within the broader context of aging 

and osteoporosis. 

 In summary, we have introduced a three–dimensional method for describing the 

orientation of trabecular structure. The method attempts to reintroduce an architectural 

framework into voxel–based image representations of cancellous bone. There are still 

improvements that could be made to the method. Particularly, the decomposition of 

plate–like structures into beam elements is somewhat arbitrary, and may lead to 

dispersion in the orientation distribution function. Nevertheless, we believe that the 

decomposition of cancellous architecture into its individual trabecular elements, and a 

spherical harmonic representation of this data, will provide a tool to help answer long 

standing questions about how deterioration of trabecular bone architecture contributes to 

the increased risk of fracture associated with osteoporosis. 
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Table 1: The mass anisotropy for three orthogonal orientations, of which, only two are 
independent. Mcc/Map is the ratio of the total mass oriented in the cranial–caudal direction 
(cc) to the total mass oriented in the anterior–posterior direction (ap). Mml is the mass 
oriented in the lateral direction. 
 

 Orientation 

Specimen Mcc/Map Mcc/Mml Mml/Map

532  3.5 5.6 0.6 

533 3.0 4.4 0.7 

534 3.7 6.2 0.6 

535 2.8 0.7 0.3 

536 4.0 2.6 1.5 
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List of Figure Captions 

1. A representative synchrotron microtomography image of a cube of trabecular bone 

reconstructed into 11.7 µm voxels. For improved clarity, only the interior 4–mm of 

the cube has been displayed in this image. The trabecular lattice is a complex 

arrangement of plates and beams. 

 

2. A) small section of trabecular bone from the cube displayed in Figure 1 with skeleton 

superposed. The skeleton has been thickened by one to two voxels to improve 

visibility. The nodes (green circles) appear at the intersection of two or more line 

segments. B) the trabecular element circled in 2A in greater detail after its removal 

from the lattice. The angles (φ,θ) of the straight–line segment connecting the nodes 

define the orientation of the trabecular element with respect to the anatomic axis. 

3. A mass orientation distribution function, M, of a representative specimen is shown in 

the image on the left (3a). The yellow–white color spectrum represents a greater 

amount of mass than the red–blue colors. The viewpoint is from the posterior 

direction. The mass distribution is graphed along a line of constant longitude (+90o) 

between the cranial and lateral directions in 3b. The graph shows the ratio of the mass 

at the given latitude to the mass oriented along the cranial–caudal axis, Mcc. 

4. A double-log graph of the ratios of mass in each of the three orthogonal directions 

(mass anisotropy, AM in Equation 2) with the corresponding ratios of the elastic 

modulus (elastic anisotropy, AE). The data can be described by the power law 

relationship in Equation 2, with the scaling exponent γ = 1.41 (R2 = 0.88). 
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5. The orientation distribution function of trabecular thickness (left) viewed from the 

posterior direction with cranial direction at the top. On the right is graphed the 

thickness along a path (shown by the arrow) from the cranial (vertical) orientation to 

the lateral (horizontal) orientation. The vertical trabeculae were much thicker than the 

horizontal trabeculae. Also, there was a pronounced orthotropic symmetry in the 

thickness distribution. 

6. The mean thickness of the vertical (solid circles) and horizontal (open squares) 

trabeculae in each specimen graphed as a function of the reciprocal of the 

connectivity. The higher the connectivity the thinner the trabeculae, implying an 

organization into either a few thick trabeculae or many thin trabeculae. The 

correlation was best among the vertical trabeculae (R2 = 0.70). 

7. Mean magnitudes of trabecular thickness by various measurement approaches 

compared with the unbiased three-dimensional average (3Dτ). Open squares are the 

mean thickness from averaging each individual trabecular element after 

decomposition. Solid circles are calculated from a single section with the plate model. 

Open circles are the average thickness of vertical plates alone. For these specimens, 

the plate model overestimated the mean thickness in all cases. 

8. a) merging nodes spaced less than on trabecular thickness (materials and methods) 

removes artifacts caused in skeletonizing the trabecular lattices. One of many “loops” 

is highlighted with the small circle. These loops are removed by the merging (8b). 

The large ellipse highlights one of several tracts of trabeculae that are not 

mechanically connected in the plane of the image. The trabecular mass associated 

with these elements would be sampled in the line intercept approach, which does not 
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account for mechanical connectedness. c) graphical comparison of the line intercept 

method (dashed line) with the ODF method based on skeletal decomposition (solid 

line) for the same specimen of trabecular bone. Because the line intercept sampling 

does not consider the connectedness of the structure, it significantly underestimates 

the mechanical anisotropy. In addition, the line intercept method misses the almost 

total absence of trabecular elements oriented at oblique angles to the primary load 

axis. Note: the line intercept method provides an orthogonal view of the actual mass 

orientation. 
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Appendix 

 Spherical harmonics are a natural choice for describing scalar functions on the 

surface of a sphere. To derive the continuous orientation functions M and τ, we used the 

trigonometric form of the spherical harmonic expansion.(26) 
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The spherical harmonics (Ye and Yo), which form an orthogonal basis set, are related to 

the Legendre functions: 
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A generating function was used to derive all of the Legendre functions. For z = cos(θ), all 

of the Legendre functions are given by the following differential expression: 
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The first three Legendre functions are 
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The coefficients Am,n and Bm,n  were determined by integrating the mass distribution M 

over the surface of the sphere. 
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In the above expression, ε0 = 1, and εn = 2 (n = 1,2,3…). A similar expression determines 

Bm,n, but with terms in m = 0 omitted: 
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